Spin Measurements through Quantum Interference

Matthew Buckley Caltech

Outline

- Motivation
- Interference of Helicity States
- SM Applications at Tevatron
- Extension to the LHC
- Conclusion

The LHC Era

- Finally have access to TeVscale physics
 - Solution to the Hierarchy Problem?
 - Dark Matter?
 - New Particles
 - SUSY, Extra-Dimensions,
 Little Higgs? Something
 totally different?

SUSY vs. UED

- Very similar experimental signatures
 - 'Copies' of the Standard Model

$$W^{\pm}, Z, A \to \tilde{W}^{\pm}, \tilde{Z}, \tilde{A} (\tilde{\chi}_{i}^{\pm}, \tilde{\chi}_{i}^{0}) \to W_{1}^{\pm}, Z_{1}, A_{1}, W_{2}^{\pm}, Z_{2}, A_{2}, \dots$$

- Dark Matter candidate → large p
- Spin measurements may be the defining experimental test.

Spin Measurements

- Most techniques for next-generation colliders concentrate on distinguishing models:
 - Comparison of total cross section

$$\sigma_{SUSY} < \sigma_{UED}$$

- Look for higher KK modes in UED
- At a linear collider can use threshold scans:
 - Scalar $\sigma \propto \beta^3$, spinor/vector $\sigma \propto \beta$
 - Cannot distinguish higher spin modes

Spin Measurements

At ILC: reconstruct production angle

 t-channel introduces model dependence: forward peak

Spin Measurements

Spin dependence of decay angles:

Assumes chiral couplings

- Using long decay chain at LHC can distinguish spinors from phase space: Near Far $\tilde{q}_L \to \tilde{\chi}_2^0 q_L \to \tilde{\ell}_B^\pm \ell^\mp q_L \to \ell^\pm \ell^\mp q_L \tilde{\chi}_1^0$
 - Polluted with near/far ambiguity, anti-squark production, and assumes chiral coupling

Spin and Quantum Interference

- Want a spin measurement with as few assumptions as possible.
- Back to Quantum Mechanics!
- ullet Decay of particle with helicity h
 - Rotations about the zaxis (particle momentum) implies that

$$\mathcal{M}_{\text{decay}} \propto e^{iJ_z\phi} = e^{ih\phi}$$

Spin and Quantum Interference

 If particle is produced in multiple helicity states and then decays, then decay amplitudes interfere coherently:

$$\sigma \propto \left| \sum \mathcal{M}_{\text{prod.}} \mathcal{M}_{\text{decay}} \right|^2$$
 $\mathcal{M}_{\text{decay}}(h, \phi) = e^{ih\phi} \mathcal{M}_{\text{decay}}(h, \phi = 0)$

• Sum runs over all helicities produced, generically $h=-s,\cdots,s$ in which case

$$\sigma = A_0 + A_1 \cos \phi + \dots + A_n \cos n\phi, \ n = 2s$$

(with H.Murayama, W. Klemm, and B.Heinemann 0804.0476)

Proof of Concept

- Demonstration of technique using data already on tape, from Tevatron
 - $p\bar{p} \rightarrow Z + \text{jet}, Z \rightarrow e^-e^+$
 - ullet $\sigma=7~{
 m pb}$ with $p_{T{
 m jet}}>30~{
 m GeV},~|\eta_{
 m jet}|<2.1$ and cuts on lepton $p_T,~\eta$
 - $1.7(8.0) \text{ fb}^{-1}$ total luminosity

Expect non-zero

$$A_0, A_1, A_2$$

Kinematics

$$\cos \phi = \frac{\hat{z} \times \vec{p}_{Z^0}}{|\hat{z} \times \vec{p}_{Z^0}|} \times \frac{\vec{p}_{Z^0} \times \vec{p}_{e^-}}{|\vec{p}_{Z^0} \times \vec{p}_{e^-}|}$$

Define positive ϕ to be in the direction of $\hat{z} \times \vec{p}_{Z^0}$

Results

- Calculated cross sections using HELAS and the adaptive Monte-Carlo program BASES.
- With only cuts on jet $p_T, \; \eta$ for Tevatron data:

Effects of Cuts

 However, detectors cannot see forward regions, and need isolation cuts on jets/leptons.

CDF cuts:

Jet transverse momentum	$p_{T,j} > 30 \text{ GeV}$
$\mathrm{Jet}\ \eta$	$ \eta < 2.1$
Invariant mass of lepton pair	$66 < m_{\ell\ell} < 116$
Central electron η	$ \eta < 1$
Second electron η	$ \eta < 1 \text{ or } 1.2 < \eta < 2.8$
Electron E_T	$E_T > 25 \text{ GeV}$
Electron isolation cuts	$\Delta R_{e-j} > 0.7$

Rotational Invariance

- Cuts introduce new directional dependences.
- Remove them by requiring events to pass cuts after rotation about boson axis

Rotational Invariance

- Cuts introduce new directional dependences.
- Remove them by requiring events to pass cuts after rotation about boson axis

Rotationally Invariant Cuts

- Applying these rotationally invariant cuts
 - (And with looser acceptances on p_T, η)

A_1/A_0	0.040 ± 0.023
A_2/A_0	0.082 ± 0.023
A_3/A_0	0.000 ± 0.023
A_4/A_0	0.000 ± 0.024

Application to the LHC

Identical beams means sign ambiguities

• $\phi \rightarrow \phi + \pi$ under this redefinition, so cannot measure odd modes from ϕ distribution

Application to the LHC

Identical beams means sign ambiguities

• $\phi \rightarrow \phi + \pi$ under this redefinition, so cannot measure odd modes from ϕ distribution

Identical Beams

- Consider $Z+{
 m jet}$ at LHC. At LO, these events come from $q \bar q, q g, \bar q g$
 - If we knew which parton went with which proton, beams would no longer be identical
 - Look for situations where Z direction correlates with one of the partons. Then can pick beam closest to Z as the positive \hat{z} direction
 - However, this correlation tends to be small
- For particular case of $Z+{
 m jet}$, qar q has larger contribution to A_1/A_0 than qg, so even with 100% directional ID, $A_1/A_0<1\%$ at LHC

New Physics and p

- 'WIMP miracle' suggests new stable particles with SU(2) quantum numbers and $m \sim 100-1000~{
 m GeV}$
 - Stability usually enforced through some new symmetry, so expect two pair-created WIMPs per event at colliders
 - Pair creation/decay of particles with known mass insufficient to fully reconstruct ϕ distribution

4+4 unknown momenta

- -2 measured p_T -6 mass relations
- 4-fold ambiguity

New Physics and p

- Can look at even longer decay chains
- Starts to lose model independence
- Problems with reconstruction, near/far ambiguities, need accurate mass measurements...

More work needed

Summing up

- Interference of helicity states provides a model-independent method of spin measurements.
- Method can be tested with current data on vector bosons at Tevatron
 - Data analysis currently being performed
 - Tevatron presents certain advantages over LHC in searching for odd modes
 - Differences in p/\bar{p} p.d.f.s can give drastically different signals at Tevatron vs. LHC